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A computer code has been developed to model an isotropic inhomogeneous collisionless 
plasma surrounding a DC-biased spherical or infinite cylindrical electrode to which a radio- 
hequency potential is applied. The initial Maxwellian velocity distribution of the plasma is 
approximated by a multiple-water-bag distribution. The instantaneous response of the plasma 
to a time-dependent potential applied to the electrode is calculated in the electrostatic 
approximation. Transient and nonlinear effects can be modeled in this way. Use of the mul- 
tiple-water-bag method results in less numerical noise than would be seen using, for example, 
a particle-in-cell method with a comparable number of simulation particles. 0 1986 Academic 

Pres, Inc 

1. INTRODUCTION 

The behavior of plasma surrounding a time-dependent electrode is of interest in 
interpretation of RF probe measurements in laboratory plasmas and in the effects 
of ambient plasma on active antennas in space (e.g., in operation of ionospheric 
sounders). We have developed a code for dynamical simulation of an isotropic, 
nonflowing, Vlasov plasma around a spherical or cylindrical electrode. 

Simulations of plasma interaction with electrodes or walls are usually done using 
the well-known particle-in-cell (PTC) algorithm. PTC codes typically suffer from 
numerical noise due to the small number of model particles used. This numerical 
noise is particularly bothersome if one wishes to make direct quantitative com- 
parisons with experiment. We have chosen instead to use the multiple-water-bag 
(MWB) method. MWB codes make use of the fact that the phase-space trajectory 
of a particle in a collisionless situation describes a contour of constant phase-space 
density of the system [ 1, 21. This fact is essentially the physical content of the 
Vlasov equation 

(1.1) 

Here ir and fi are the time-derivatives of the canonical position and momentum 
vectors and V and VP represent the gradient operators in position- and momentum- 
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SIMULATION OF INHOMOGENEOUS PLASMA 19 

space, respectively. An MWB distribution is piecewise constant in phase-space, and 
its evolution is completely specified by the evolution of the boundaries between 
regions of different phase-space density. The MWB method represents a smoother 
discretization of a continuous distribution than does the PIC method. 

In Section 2 we outline the physical problem to be modeled. In Section 3 the 
MWB model of the plasma is described. We discuss the calculation of densities and 
fluxes of particles in Section 4. Tests of the simulation are presented in Section 5, 

the work is summarized in Section 6. 

2. PHYSICAL hOELEM 

We consider a sphere or cylinder in an isotropic collisionless plasma. In the case 
of the cylinder, we assume ;1,,4 h + A, where Ai, is the Debye length, h is the length 
of the cylinder, and /z is the free-space wavelength of the applied signal. This 
assumption allows us to ignore and effects. We use the electrostatic approximat~or~~ 
in which all time-dependent magnetic fields are neglected, and all electric Gelds are 
assumed radially symmetric. We also neglect time-independent magnetic fields. 

We assume that the plasma is at rest with respect to the electrode. e also 
assume that the electrode emits no particles and absorbs all particles that strike it. 
The electrode surface is considered equipotential at all times. Initially the electrode 
is at some fixed bias potential, and the ambient Maxwellian plasma which 
surrounds it is in a steady state. The initial steady-state density and potential 
profiles are specified according to the static probe theory of 131. 

With the above simplifying assumptions the angular momentum of each particle 
is conserved. However, we cannot integrate angular momentum out of t 
because particles having different angular. momenta have different radial 
and this affects their collection by the electrode. Therefore, we cannot 
problem to a single one-dimensional problem with two dynamical variables (radial 
position and velocity). We can reduce the problem to a set of couple one-dimen- 
sional problems, each corresponding to a different angular momentum (hence effec- 
tive potential). 

It is convenient to normalize the simulation variables to appropriate para 
of the plasma. Our unit of length is the Debye length 2,. Time is normal 
l/(+2> where cope is the electron plasma frequency. The derived unit of velocity is 
then &cD~~. Mass and charge are normalized to electron mass m, and rnag~i~~~de e 
of electron charge. Density is normalized to quasineutral density far from the elec- 
trode n,. Electric potential is normalized to the electron thermal energy per elec- 
tronic charge kT/e. 

The units of electric field are then kT/ei,. The electron most probable thermal 
velocity vth = (2kT/m) ‘~2 in terms of iDope is then $. Henceforth we will take the 
symbol Y to mean radius in Debye lengths, and t to mean ti 
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3. THE MWB MODEL OF THE PLASMA 

In a PIC code, the initial conditions usually consist of a distribution of model 
particles in some finite simulation region. The particles are usually given random 
initial velocities, often weighted in some fashion to approximate a Maxwellian 
velocity distribution. The identities of the neighbours of any given particle are of no 
consequence. In an MWB code, the initial velocities are determined analytically, 
and the particles are set up in “chains” which define boundaries between regions of 
different phase-space density. MWB codes have been used for dynamical 
simulations of plasmas [l, 2,4], self-gravitating systems [IS], and fluid flow 
problems [6, 71. MWB approximations of continuous distributions have also been 
employed in analytical investigations of plasmas [8-l 11. 

We wish to approximate a Maxwellian velocity distribution with a water-bag dis- 
tribution containing y1 bags. For this purpose we renormalize the velocity v so that 
V th = (2kT/m)1/2 = 1 (instead of fi), and the distribution function f is normalized 
so that its integral over all v is 1. The Maxwell distributions in 1, 2, and 3 dimen- 
sions then are 

ev-$1 

f2 = d2n ~=K1exp(-v2,-v~) 
dv, dv, 

f, E d3n 
dv, dv, dv, = 71 

~312exp(-v~-v~-vZ) 

(3.la) 

(3.lb) 

(3.lc) 

or, more compactly, 

fh=Kh12exp(-v2); h=l,2,3;O<v<co. (3.2) 

For h = 1 this range of v gives half the distribution. We write the water-bag dis- 
tribution on v as 

n 
fhwb= c A,H(v,-v) 

k=l 

where H is the Heaviside unit step function. In defining the kth bag we have two 
free parameters, A, and vk. We can optimize our choices of these parameters for 
k = 1,2,..., n by requiring that the first 2n moments of the water-bag and the 
Maxwellian distributions be equal. We can do the integrals over the 2- and 
3-dimensional velocity-spaces in cylindrical and spherical coordinates, respectively. 
Equating the ith moment off,, and fhwb then gives 

kgl A, j: ff(Vk-v)vi+h-l dv=xeh12 j: exp(-u2) vifh-’ do. (3.4) 
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TABLE I 

(a) Boundaries and step heights for the 4-bag electron distribution in cylindrical geometry cakuiated 
using the method described in Appendix A. Density (i.e., zeroth moment of the distribution) normalized 
to 1. Velocity in units of Ano,; hence thermal velocity is 
defined in Appendix A by factors of 1 and $, 

,J’?. These quantities differ from the Ak and tlk 
respectively, because of the differences in normahzation 

mentioned in Section 2. 

Bag No. 

1 
2 
3 
4 

Height 

0.72669746-01 
0.6300189E- 01 
O.l262550E-01 
0.36158986-03 

Boundary value 

0.7937255E + 00 
0.1666030E+ 01 
0.26992938 + 01 
0,3958064E+ 01 

- 

(b) Boundaries and step heights for the 4-bag electron distribution in spherical geometry. These 
quantities differ from the A, and vk defined in Appendix A by factors 2m1” and ,/?, respectively. 

Bag No. Height Boundary value 

I 0.3224505E- 01 0.9781207E+OO 
2 0.19699808-01 O.i877568E+Ol 
3 0.2970676E-02 0.2913344E+ 01 
4 0.65243056-04 0.4i63877E+ 01 

(c) Boundaries and step heights for the 4-bag ion distribution in spherical geometry. ~,/m, = 16: 

TJT,= 1. These quantities differ from the heights and boundary values of (0) by factors of ,m 
and (m,/m,) -j”. respectively. 

Bag No. Height Boundary value 

1 0.20636848+ 01 
2 0.12607876+ 01 
3 O.l901233E+OO 
4 0.4175555E- 02 

0.2445302E + 00 
3.4693919E+ OQ 
0.72833606+(N) 
O.;O40969E+Ql 

(d) Boundaries and step heights for an 8-bag electron distribution in spherical geometry. 

Bag No Height 

1 O.l340249E-01 
2 0.2171504E-01 
3 O.l752691E-01 
4 0.7161077E-02 
5 0.13805586-02 
6 0.10872038-03 
7 0.26305176 - 05 
8 0.9566760E-08 

Boundary value 

0.5150765E+ 00 
O.l03247OE+ 01 
0.1638302Ei 01 
0.2318753E+Ol 
0.3069277E+Ol 
0.38975888 + 01 
0,4831809E+Ol 
0.5958944.E + 01 
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Integrating and simplifying, (3.4) yields 

i=l,2 ,..., 2n (3.5) 

where r is the usual Gamma function. Equations (3.5) are solved by methods 
similar to those used in [12] to compute roots and weights for Gaussian 
quadrature of the Maxwellian distribution. The solution method is discussed in 
more detail in Appendix A. Since the thermal velocity u,~ in simulation units is not 
equal to 1 but to &, the velocities vk obtained from solving (3.5) must be mul- 
tiplied by v,,,, and the step heights A, divided by v&. 

In a static potential d(r), the radial velocity v, of a particle at radius Y on contour 
k is determined by conservation of energy, given that its angular momentum has 
the value J= mrvB or mrv, in two and three dimensions, respectively. The result is 

vf=l+ 
J2 2aQr) 

22 -- (3.6) mr m 

-‘~“4.a 3.5 6.0 8.5 
l’.O RADiliS 

FIG. 1. Electron phase-space contours (“bag boundaries”) for angular momentum of zero (upper 
panel) and 14.67181m&,w,, (lower panel) surrounding a llZ,, radius sphere at zero potential. Radius in 
units of ,I,, velocity in units of ,?,w,,. The number next to each contour is the value of the index k iden- 
tifying the contour. 
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where m, q, and J are the mass, charge, and angular momentum of the particle, 
respectively. The bag boundary velocity II~ is the radial velocity, in the limit I” + ‘KI, 
of any particle on contour k. Equation (3.6) defines equilibrium shapes of 
water bags in a static potential d(v). Regions where 0 are of course forbid 
Outbound particles are those with v,> 0 and inbound particles are those wst 
U, < 0. Outbound orbits having v, > 0 at r = Y, are unpopulat (no particles emit- 
ted by the electrode). For the problem of the cylindrical elec de the h = 2 values 
of Ak and vk are used, and for the spherical electrode the h = 3 values are used. The 
values used in this work are listed in Table I. 

As mentioned in Section 2 we can treat each value of angular momentum as 
defining a separate two-dimensional problem for purposes of following particle 
orbits. In terms of the model, this means we can choose a discrete set of ues of 
angular m entum with which we will define initial bag boundaries act ing to 
Eq. (3.6). e will refer to these as angular momentum frames. The ice of 
angular momentum frames is somewhat arbitrary, but they should be chosen 
that the integrals over velocity-space for particle and current density are reasona 
well approximated. This point is discussed further in Section 4. The results 
ted an this paper were generated using a 4-bag distribution with 15 or 86 angular 

FIG. 2. Same as Fig. 1 except sphere is biased at -3kT/e. 
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momentum frames. Because of the angular symmetry of the problem, only non- 
negative values of angular momentum were used. Figure 1 shows bag boundaries in 
zero and nonzero angular momentum frames for electrons near a spherical probe at 
space potential. Figures 2 and 3 show the same frames with the probe DC biased at 
- 3kT/e and + 3kT/e, respectively. In static cases a particle’s direction of travel in 
phase-space is always tangent to the contour it lies on. 

In a time-dependent potential &r, t), the evolution of the bag boundaries is 
followed by solving the equations of motion of the particles defining them. In dif- 
ference form, the equations are 

Au= ;E(r, t,+-$ At (3.7a) 

Ar = vi, At. (3.7b) 

Equations (3.7) are solved by a simple leap-frog scheme: 

(3.8b) 
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where Y/ is particle position at timestep 1, v,,/- i,* is the particle’s radial velocity at 
timestep I- l/2, and dt is the timestep. The electric field E/(P^/) is linearly inter- 
polated from the field values E,,, at the grid points rm calculated for timestep E. The 
value of At used herein was typically l/16. 

The bag boundary contours are initially set up with the spacing between 
~eig~bouring particles on a contour no greater than the s 
points Ar. Typically Ar was 0.251,. With this value of dr the i 
4-bag distribution with 16 angular momentum frames require 
As presently implemented on the HP 1000 model 2117F computer used herein, the 
program can store up to 16,384 particles per charge species. 

The boundary contours begin and end on the boundaries of the simulation 
region. The beginning of a contour is defined as the point where new particles enter 
the simulation region on that contour. The end of a contour is the point where par- 
ticles on that contour leave the simulation region. A contour is identified by t 
boundary k which it represents and by the angular momentum frame j in which it 
is defined. Additionally, it is convenient to treat inbound and outbound legs of an 
orbit as separate contours, so an additional index IZ distinguishes inboun 
bound contours of the same k and j. 

Each particle is characterized by entries in two single-precision real arrays, R 
and VP(i), which define its position and velocity, and two integer arrays, NEXT(i) 
and LAST(i), which identify its two nearest neighbours on the contour. Two small 
integer arrays, IBEG(n, k, j) and IEND(n, k, j), identify the first and last 
on each contour. Unused storage locations in RP, VP, NE T, and LAST are 
assigned to a null contour. As particles leave the simulation region during a run, 
their storage locations are added to the null contour. As new particles are de~~~~ 
to enter the simulation region, storage locations for them are taken fro 
contour and added at the beginning of the bag boundary contours. Ne 
are added at the outer boundary and given initial inward velocities con 
the initial static equilibrium. A new particle is injected on a contour whenever the 
outermost particle on the contour moves inward more t an dr from the outer 
boundary. This amounts to a constant injected current. 

n contours which do not intersect the electrode, e.g., all those in the lower pan- 
els of Figs. 1, 2, and 3, a particle enters at the outer boundary on the inbound con- 
tour, moves onto the outbound contour at some turning point, and. exits the 
simulation region at the outer boundary. On contours which intersect the el 
a particle enters at the outer boundary and exits at the inner boundary (e 
surface), as in all the contours in Fig. 3 (upper panel). The outbound k = 3 contour 
in Fig. 2 (upper panel) represents an orbit that grazes the electrode. 
‘“enter” the simulation with zero velocity, at the el ode surface on this co 
new particle is injected at the electrode surface w the innermost particle on the 
outbound contour moves more than Ar away from the (P.~, 
sionless phase-space coordinate system; i.e., when As z ((r 

When a time-dependent potential is applied to the electr 
shape. If adjacent particles on a contour become farther apart than dp, a particle is 
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FIG. 4. Zero-angular-momentum electron phase-space contours surrounding a 11, radius sphere 
biased at -3kT/e and driven at 2w,, by a signal of amplitude 3kT/e. These are the instantaneous con- 
tour shapes at phase zero of a cycle in the applied potential under conditions of steady oscillation. The 
truncation of the “streamers” of outbound particles is an artifact of the contour-handling algorithm. 

inserted between them to keep the contour well-define. The new particle is inserted 
at the midpoint of the line segment joining the previously adjacent particles. Its 
velocity .is assumed initially to be the average of the velocities of the previously 
adjacent particles. If adjacent particles become closer together than Ar/2, one is 
removed to save storage space. Figure 4 shows some of the contour behaviour seen 
under a steady forced oscillation of the plasma. Note the streams of outward 
accelerated particles, which appear in the figure as “fingers” or “barbs” directed 
towards the outer boundary. The streams which would physically extend beyond 
the outer boundary are truncated. 

4. CALCULATION OF DENSITIES, POTENTIALS, AND CURRENTS 

We now consider the calculation of the field quantities of interest in the 
simulation region. 

At each titiestep we must calculate the particle densities at the grid points rm by 
integrating the water-bag distributions over velocity-space. Let us first consider a 
cylindrical electrode. 

A particle in the cylindrical geometry has a radial component of velocity v, which 
is determined by the solution of Eqs. (3.7)-(3.8), and a tangential component u,, 
where 

J 
u,=-. (4.1) 

mr 

The form of the velocity-space integral for density n(r) is then 

(4.2) 
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where we have used the fact that the cylindrical problem is symmetric in U, (i.e., in 
J). It is convenient to recast (4.2) in a polar velocity coordinate system as was done 
in Section 3 to arrive at Eq. (3.4). Let 

G‘ = (v’ + u2)iJ2 
P r t j4.3a) 

Q = arctan( -21,/v,) (4.3b) 

where the sign of the argument of the arctan function has been chosen so that 8 = 0 
corresponds to an inbound particle with zero angular momentum. With this trans- 
formation, Equation 4.2) becomes 

(4.4) 

where Jf denotes the distribution function of the transformed variables. We can now 
take advantage of the fact that at any Y, the multiple-water-bag distribution is a 
piecewise constant function of its argument v. Substituting ,fhhu+, as defined in (3.3) 
into (4.4), we have 

-“, 
“t 

5. 00 

0. 00 
-5.00 0. 00 5, 00 

-“, 

FIG. 5. (Upper panel) Electron velocity-space integration contours at r = 3kD, for a cylindrical elec- 
trode of radius rO = 11, biased at - 3kT/e. The lowest-energy (k = 1) water bag does not get this close to 
the electrode. The “roughness” in the absorption boundary for k = 3 and 4 is a discretization effect. The 
asymmetry about o,=O is due to particle absorptioc. (Lower panel) As above, except for cylinder at 
zero potential. 
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FIG. 6. Steady-state particle densities for a 11, radius cylinder at -3kT/e. The ion density profile is 
assumed from unpublished calculations of Laframboise based on Ref. 131. The asterisks represent the 
electron density calculated from the 4-bag distribution. The line passing through the asterisks is the elec- 
tron density calculated by Laframboise [S] for this situation. 

where the summation is over all waterbags that exist at r, and where v,,(8) is the 
total velocity at Y of any particle on bag boundary k, and f denotes the integral 
over the half-contour defined by i&(6), over 0 d 8 < rc. Figure 5 shows 
schematically the contours obtained for a 1;1, radius cylinder biased at -3kT/e 
and 0. 

The integral in (4.5) is evaluated by trapezoidal rule integration over the discrete 
set of points vikj, 8,. These are defined by evaluating v, for each angular momen- 
tum frame at grid point Y,, interpolating values of zi, for each bag contour at rm, 
and then using Eq. (4.3). Examples of steady-state density profiles calculated in this 
way for a cylindrical probe are shown in Fig. 6. Here the electron densities were 
calculated from the waterbag distribution and the ion densities were assumed from 
unpublished results computed by Laframboise using his static probe theory [3]. 

The development of the density integral in the spherical case is similar, except 
that v, is now a radial coordinate in a cylindrical velocity-space coordinate system 
(v,, 01, v,) instead of a Cartesian coordinate. Hence the spherical analogue of 
Eq. (4.2), after integration over CC, is 

(4.6) 

In the cylindrical electrode case we use (4.3) to transform from a Cartesian coor- 
dinate system in v, and v, to a cylindrical coordinate system in v, and 9. In the 
spherical case, (4.3) is a transformation from a cylindrical coordinate system in v,, 
v,, and the ignorable azimuthal angle a to a spherical coordinate system in which 8 
is a polar angle. The spherical analogue of (4.4.) is 

r, up, Q) vi dv, sin 8 d8 (4.7) 
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and finally the spherical analogue of (4.5) is 

n(r) =; n C Ak ji v;,(Q) sin(Q) d$ 
k 

where now the A, values, and the initial values of vpk impose 
da are those for h = 3 rather than h = 2. 

ther than using the trapezoidal rule on the integrand of Eq. (4.8), we assu 
v&(B) piecewise linear in 8 between nodes Oki. The integral between nodes i and 
I+ 1 is then 

sin @[a0 + b] dB (4.9) 

where 
3 

‘pk,it 1 - ‘;ki 

a = 6k,i+ I - Qkz 

and b = uiki - aBk,. 

Expression (4.9) can be integrated by parts and the resulting algebraic expression in 
Ypki and 8,; coded into a routine for the density evaluation in spherical electrode 
computations. This procedure was found to work as well for the spherical cases as 
the trapezoidal rule integration of Eq. (4.5) did for cylindrical cases. Figures 7 and 
8 show density profiles calculated for the static situations of Figs. 2 and 3. Figure 6 
shows the density profiles for the lib radius cylinder at dp= -3kTje. 

Once the particle densities are known, we can solve Poisson’s equation for the 
potential: 

(4.10) 

FIG. 7. Same as Fig. 6, except that the electrode is a 11, radius sphere. 
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FIG. 8. Same as Fig. 7, except that the electrode is a 12, radius sphere at potential b,,= +3kT/e. 

where M= 1 for the cylindrical and M= 2 for the spherical case, qi is the ion 
charge, and n, and n, are the ion and electron densities. To find the potential at the 
grid points, d,, we write a centred differend form of (4.10): 

4 ,+1-2~,+~,~l+M(~,+,-~,-l)=n ly t)-qini(r,,t) 

(Ad* 2r, Ar e m’ 
(4.11) 

where the boundary values &, = $p at the electrode and &,,, at the outer boundary 
are specified. Equation (4.11) yields a set of linear equations in the unknowns 4m 
with a tridiagonal coefficient matrix. This is readily solved by simple Gauss 
elimination. The Poisson solving routine was written using the Thomas tridiagonal 
algorithm (see, for example, Ref. [13]). The electrode potential dp is the DC bias 
potential plus the instantaneous value of the applied time-dependent potential. The 
outer boundary potential is kept fixed at a value consistent with the static probe 
theory of [3]. This provides a realistic model of the static presheath. 

The electric field at the internal grid points, Em, is found by simple central dif- 
ferencing of d,, and the field at the inner (outer) boundary is found by leading 
(trailing) differencing of 4: 

4 4*-l. E,,,=- m+;Ar , ??I= 

&= -.b.$b (4.12b) 

E 4 max -hnax-1 
max = - Ar . (4.12~) 

1, L.., mmax - 1 (4.12a) 

Since Ar is only 0.25, the truncation error is small. Repeating some runs with 
second-order difference formulas for E. and E,,, produced differences of only 1% 
in the computed current and 3 % in the modulus of the total admittance. 



SIhVJLATION OF INHOMOGENEOUS PLASMA 31 

We also wish to calculate the particle current collected y the electrode. T 
means we must integrate u, f(r, vr, 21,) over velocity at the electrode surface rO. In 
the cylindrical case, the particle flux at the electrode surface is 

where the integration is over only v, 6 0 because the probe is ass 
particles. The recasting of Eq. (4.13) into water-bag form proce 
same steps as lead from Eqs. (4.2) to (4.5). The analogue to Eq. (4.4) for partick 
flux is 

J=2 
42 @J_ 

s s 
f(r,, up, 6) vi dv, sin 6 6i0 

0 0 

which leads to 

J=i c A, $ v&(0) sin 8 c&3. 
k 

Since the electrode emits no particles, the contour defined by v;,(6) will not exten 
into the region 0 > 7112. Equation (4.15) has almost the same form as (4.8), am 
evaluated in the same way. 

The spherical analogue of (4.13) is 

which leads to 

J=271 vi y(r,, up, 19) sin 6 cos 8 dv, d$ 

and, finally, 

J = 5 c A, 6 t&(B) sin 8 cos 0 &I. 
k 

(4.18) 

Letting x = sin 8, we can rewrite (4.18) as 

J=;~A,j&x)xdx. 
k 

(4.19) 

The integrals in (4.19) are evaluated using the trapezoidal rule. 
The particle flux at the surface of a biased electrode in a Maxwellian plasma is 

known analytically for some (time-independent) cases. We can compare the 

581/65/l-3 
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predicted by the water-bag model for these cases with the analytic values to get a 
better idea of how well the water-bag model can be expected to perform. 

If, for the case of particles repelled by the electrode, we substitute f = v,~~x-~” 
exp( - (vf + v:)/r& - 4,) into either Eq. (4.13) or (4.16) we find 

J=Jdw(-4,) (4.20) 

where Jo = n,(kT/2wz)1’2 is the flux when the electrode is at zero potential, and 4 
is normalized in terms of kT/q, T and q being the temperature and charge of the 
particle species under consideration. For the water-bag distributions, in a time- 
independent situation, v+(B) is a constant given by energy conservation, and 
Eqs. (4.15) and (4.18) reduce respectively to 

(4.21a) 

and 

J=f c A,$, 
k 

(4.21b) 

where IJ$ = vz - v&Q~~ and the summation is carried out over those bag boundaries 
that intersect the electrode. Obviously 

Jo=; f AkV; 

k=l 

(4.22a) 

Jo=: f A,& 
k=l 

(4.22b) 

for the cylindrical and spherical cases, respectively. 
The fluxes for attracted Maxwellian particles are known analytically only for the 

special case called orbit-limited current collection. “Orbit-limited” means that all 
particles that start at infinity with energy and angular momentum such that their 
kinetic energy is still positive at the electrode surface will reach the electrode. This is 
true only if l&r)1 d ecreases more slowly with radius than rP2. Otherwise, for some 
values of angular momentum there are maxima in the effective potential 
u = 4 + J2/2mr2 which screen by electrode [ 141. 

The orbit-limited attracted-particle fluxes are [15, 161 

J= C2(4,/~)“’ + ev(i,) eW&)l JO (4.23a) 

J=U+d,) Jo (4.23b) 

for the cylindrical and spherical cases, respectively, where dP is normalized in terms 
of - kT/q, and erfc is the usual complementary error function. Since particles com- 
ing from infinity must have positive total energy, the contour integrals in (4.15) and 
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TABLE II 

33 

(a) Orbit-limited electron currents (per unit length) collected by a biased infinite cylinder from a 
Maxwellian plasma (Eq. (4.23a)) and from an optimized 4-bag distribution plasma. Current normaiized 
to thermal current at space potential. Potential in units of -U/q. 
- 

Potential 4-bag current Maxwehian 6urrent 

5.7526 5.7526 
3.7388 3.7388 
3.1859 3.1859 

3 2.2418 2.2417 
2 1.9320 1.9320 
1.5 1.7551 1.7551 

A.6 1.5560 1.3721 1.5560 1.3721 
0.3 1.2101 1.2101 
0.1 1.0804 1.0804 

-“o.l 0.9042 1 .oooo 0.9048 1.0 

-0.3 0.7386 0.7408 
-0.6 0.5583 0.5488 
-1 0.3589 0.3679 
-1.5 0.2231 

r: %i: 0.4893B- 01 0.1353 0.49796-01 
-4 0.12836-01 0.1832.!-01 

1; 
0.8150E-02 0.673&E-02 
0.4242E-02 0.2479E-02 

1; 0.0 O.l300E-02 0.91206-03 0.3350E-03 

(b) Same as (a) for sphere. Maxwellian currents given by Eq. (4.23b). 

Potential 4-bag current Maxwellian current 

25 
10 
7 

: 
1.5 
1.0 
0.6 
0.3 
0.1 
0.0 

-0.1 
-0.3 
-0.6 
-1 

1: 
-4 

1; 
-7 

1; 

25.925 
10.970 
7.979 
3.991 
2.994 
2.496 
1.997 
1.598 
1.299 
1.100 
I.000 
0.905 
0.740 
0.554 
0.367 
0.141 
0.532B-01 
O.l28E-01 
6.900E-03 
3.640B-03 
1.420E-03 
2.160E-04 
0.0 

26 
II 
8 
4 

:.5 
2.0 
1.6 
1.3 
1.1 
1.0 
0.905 
0.741 
0.549 
0.368 
0.135 
0.498E-01 
O.l83E-01 
6.740B-03 
2.480B-03 
0.9126-03 
3.350E-04 
1.230E-04 
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(4.18) now include a negative contribution from the resulting cutoff boundary at 
2, = v,~ ,/&. Particles with total velocity less than a,h 4 at the electrode would 
have to originate on the electrode and so are not allowed. The results are 

(4.24a) 

J=f c Ak[(U? + zI:hdp)2 - ufhd;l 
k 

for the cylindrical and spherical cases, respectively. 
Values of J/J0 were computed for several values of dp using (4.21) (4.24), and the 

values of A, and vk listed in Table I. These are listed along with the corresponding 
analytic values in Table II. The absolute difference between the two is usually less 
than 0.01, in terms of the random thermal current, and is never greater than 0.07. 
The relative differences are larger for repelling potentials because, as the repelling 
potential increases, more of the water bags are completely excluded from the elec- 
trode. At the most repulsive potential shown, no water-bag contour reaches the 
electrode. The computed fluxes will not be this accurate because the velocity up& at 
which a contour intersects the electrode is not known precisely. Extrapolating it 
from the velocity coordinates of the last few particles can result in large errors if the 
contour represents a near-grazing orbit. The procedure adopted here was to simply 
take v+j at the electrode surface as equal to the velocity coordinate of the last par- 
ticle on the contour. This results in a systematic overestimate of the particle flux. 
The relative overestimate becomes smaller as the potential becomes more attractive. 
For attracted particles in the spherical case it is 1 to 2%. For repelled particles in 
the spherical case it is typically about 25 %. 

The total current drawn from the plasma by the electrode is 

Z=Zi+Z, (4.25) 

where 

Zi = -7c(2rp)M qiJi (4.26a) 

1, = 7c(2r,)M J,. (4.26b) 

Ji and J, are the ion and electron particle flux densities and M= l(2) for the cylin- 
drical (spherical) electrode. The signs of li and 1, are chosen to be consistent with 
the current at the input terminals of the electrode. Usually qi = 1. In the cylindrical 
case I is current per unit length. In cases in which the ions are treated as fixed, li is 
of course zero. 

The first test of the simulation model is whether it can correctly maintain its 
initial equilibrium configuration with no time-dependent signal applied. It can, 
provided the range of angular momentum values possible in the simulation region 
is adequately represented. One might at first suppose that only those angular 



SIMULATION OF INHOMOGENEOUS PLASMA 35 

TABLE HI 

(a) Electron angular-momentum values used in the case of the II, radius cylindrical electrode. Unit 
of / is ~~~q,~. Values chosen as described in Section 4. 

Frame J J2 

1 0.0000000E + 00 0.0000000E + 00 
2 0.793725X+ 00 0.6300001 E + 00 
3 O.l587451E+Ol 0.2520000E + 01 
4 0.2381176E+Ol 0.5670OOl.E+ 01 
5 0.3174902EfOl 0.1oomooE + 02 
6 0.3968627E+ 01 0.1575OOOE+02 
1 0.4762353E+ 01 0.22680006 + 02 
8 05556079B+ 01 0.3087QOlE+ 02 
9 0.6349804E + 01 0.4032001 E + 02 

10 0.7143530Ef 01 0.5103002E+ 02 
11 0.7937255E+Ol 0.6300002E + 02 
12 0.8730980/?+ 01 0.7623001 E + 02 
13 0.95247066+ 01 0.90720026 f 02 
14 O.l031843E+02 0.10647OOE+O3 
15 O.l111216E+02 O.l2348OlE+ 03 
16 0.1190588E + 02 0.1417500E~ 03 

b) Electron angular-momentum values used in the case of the ii., radius spherical electrode 

Frame J 

1 0.0000000E+00 
2 0.9781207E+OO 
3 O.l956241E+Ol 
4 0.29343626+01 
5 0.39124838 + 01 
6 0.4890603E + 01 
7 0.58687246+01 
8 0.68468456+ 01 
9 0.7824965E+ 01 

IO 0.8803085Ef 01 
11 0.9781206Ef 01 
12 0.1075933E + 02 
13 O.i173745E+OZ 
14 O.l271557E+02 
15 0.13693698+02 
16 0.14671818+02 

J2 

0.0000000E + 00 
0.9567201E+00 
0.38268808 + 01 
0.36104796 + 01 
0.1530752& 02 
0.23918OOE + 02 
0.3444192E+OZ 
0.4687928E + 02 
0.6123009E + 02 
O.l749431E+ 02 
0.95672QOE+ 02 
@.1157631E+O3 
0.1377677 E + 03 
0.16168576 + 03 
O.l87517!E+03 
0.2152620Et03 

(Table continued) 
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TABLE III-Continued 

(c) Ion angular-momentum values used in the case of the 11, radius spherical electrode with bias 
potential -3kT/e. 

Frame J J’jrnf 

1 0.oooooooE+ 00 0.0000000E + 00 
2 0.3703279E + 01 0.5357140E- 01 
3 0.5237228E + 01 O.l071428E+OO 
4 0.6414269E+ 01 O.l607142E+ 00 
5 0.7406560E+ 01 0.2142857E + 00 
6 0.8280787&Y+ 01 0.2678571E+ 00 
7 0.9071148E+ 01 0.3214285E 00 + 
8 0.9797958B + 01 0.3749999E + 00 
9 0.1018105E + 02 0.40489756+ 00 

10 0.1055024E + 02 0.4347950E + 00 
11 O.l234521E+02 0.5953288E+ 00 
12 O.l522502E+02 0.90547346 + 00 
13 0.19323728+02 0.14586176+ 01 
14 0.2551101E+02 0.25422336+ 01 
15 0.3046667E + 02 0.3625850E 01 + 
16 0.3472209E + 02 0.4709467E 01 + 

(d) Ion angular-momentum values used in the case of the 11, radius spherical electrode with bias 
potential - lkT/e. 

Frame J J2/m,2 

1 0.oooooooE + 00 0.0000000E + 00 
2 0.2138090E + 01 0.17857136-01 
3 0.3023715E + 01 0.35714276-01 
4 0.37032796 + 01 0.5357140E- 01 
5 0.4276179E+Ol 0.7142855E-01 
6 0.4780914E + 01 0.8928569E- 01 
7 0.5237229E + 01 0.1071428E 00 + 
8 0.5656854E + 01 0.125OOOOE 00 + 
9 0.6297124E + 01 0.1548975EfOO 

10 0.6878047E + 01 0.18479506+00 
11 0.9402349E + 01 0.34532888 00 + 
12 0,1295381E+02 0.6554734E 00 + 
13 0.1758994E + 02 0.1208617E 01 + 
14 0.2422420E + 02 0.22922336+ 01 
15 0.2939758E + 02 0.33758506+ 01 
16 0.33787928 + 02 0.44594678 01 + 

(Table continued) 
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TABLE III-Continued 

(e) Electron angular-momentum values used in the case of the 101n radius spherical electrode. 

Frame J JZ 

1 0.00ooQocE + 00 0.00QoooQE + 00 
2 0.9781206E+Ol 0.95672OOE+Q2 
3 O.l956241E+ 02 0.3826880E + 03 
4 0.29343626+02 W3610481E+ Q3 
5 0.39124826+ 02 O.l530752E+ 04 
6 0.48906036+02 0.23918OOE + 04 
7 0.5868724E+02 0.34441926 + 04 
8 0,6846844E+02 0.4687928E + 04 
9 0.78249656+02 0.61230088+ 04 

10 0.8803085E+02 0.7749431E + 04 
11 0.9781206E+ 02 0.9567199E+04 
12 0.1075933IT+ 03 0.1157631Ef05 
13 0.1173745Iz+ 03 0.1317677E f 0.5 
14 O.l271557E+03 O.l616857E+O5 
15 O.l369369E+03 0.1875171E+05 

momentum frames in which particles come close enough to the probe to be 
significantly perturbed by it need be modeled. Early test runs with 8 angular 

momentum frames were unstable. This was because the node points uPkj, Okj in the 
density integration were too widely spaced near the outer boundary. Test runs with 
more frames at higher values of angular momentum (Table III) were found to be 
stable. Results of a typical test run are shown in Fig. 9. The instantaneous currents, 
electric fields and potentials at the probe and the middle of the simulation region, 
and the natural logarithm of the electrostatic energy in the simulation region 

FIG. 9. Potential (upper curve), electric field (middie curve), and electron current (lower curve) at 
surface of l,In radius sphere over t = 0 to 31.250;’ with no RF signal applied. The potential curve is dis- 
placed upward 3kT/e for clarity. 
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(In J;y E*(r) 7~(2r)~ d r are plotted as functions of time over the duration of the ) 
run. The last quantity is used as a stability diagnostic. The initial equilibrium is 
evidently quite stable. The values of angular momentum used in the various 
production runs are listed in Table III. The repelled particles were given values of 
angular momentum at intervals of mrpvk= i. This equispacing of the angular 
momentum frames worked well in matching the repelled species density profile in 
the static equilibrium cases. Several schemes were tried for the attracted particles. 
None worked uniformly well for all electrode sizes and geometries. The values 
shown were generated by specifying effective potentials at the electrode surface. The 
first 8 values correspond to equispaced values of effective potential at the electrode 
from - I@,1 to 0. The next 4 values correspond to grazing incidence of the 4 bag 
boundary contours at the electrode. The last 4 values correspond to equispaced 
values of effective potential at intervals of $mvz=,. 

The quantities plotted in Fig. 9 were output every 1 to 5 timesteps, depending on 
the length of the run. Additionally, all particle coordinates and grid-point values of 
4, and E, were dumped at regular intervals to permit restarts and examination of 
detailed plasma behaviour. 

Another test of stability was carried out by abruptly changing the electrode bias 
potential. A 11, radius electrode initially at zero potential was changed to a poten- 
tial of - lkT/e at time t = 0. The electrons achieved a stable steady state with the 
new potential after approximately two plasma periods. 

Accuracy test were carried out by re-running selected cases with grid spacing and 
timestep doubled, with the length of the simulation region doubled, with the spac- 
ing between angular momentum frames doubled, and with the number of bags 
doubled. Accuracy estimates based on these tests are given in Section 5. 

No production runs were carried out for electron-attracting bias potentials. Dif- 
ficulties were encountered with the behaviour of the absorption-cutoff-boundary 
contours (e.g., the lowest-energy contour in Fig. 3, upper panel). Because of their 
low starting velocities, particles on these contours are very sensitive to spatial dis- 
cretization errors in the fields. Under applied time-dependent potentials, this fact 
can result in bizarre contour shapes and substantial errors in the density. Attracted 
ions, being more massive and hence subject to smaller accelerations, are less affec- 
ted by this problem. 

5. TESTS OF THE SIMULATION 

We have applied the simulation code to the problem of an RF excited electrode 
in a plasma. At time t = 0 a sinusoidal potential is applied to the electrode surface. 
Frequencies from 0.1 to 3mpe were investigated. This range includes the frequency of 
the well-known rectification resonance. We compare the frequency-dependent 
behaviour of a small (rp= Ai,) and large (rp= LO&,) spherical probe and a small 
(r, = A,) cylindrical probe. Probe bias was - 3kT/e in all cases. Most runs were 
done with ions fixed. A few runs were carried out for the small spherical probe with 
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FIG. 10. Time-averaged electron currents as functions of frequency. (1) ljLo radius sphere, fixed ions, 
signal amplitude 3kT/e (circles joined by solid line). (2) As in case 1, but with dynamic ions of mass 
l&z, (circles joined by dotted line). (3) 101, radius sphere, signal amplitude 2kT/e (circles joined by 
dashed line). (4) 11.o radius cylinder, signal amplitude lkT/e (crosses joined by soid line). The value 
theoretically expected in the limit of high frequency is exp( -3) =0.0498 in all cases (horizontal solid 
line). 

dynamic ions of mass 16m,. Inclusion of ion dynamics was found to have little 
effect on the results. 

We first examine the DC current-frequency characteristics, which are shown in 
Fig, 10. The DC current collected by the electrode was calculated by averaging the 
instantaneous current over several RF cycles after steady oscillation had been 
achieved. The current values are accurate to within 10 % over most of the frequency 
range. This estimate was obtained by comparing current values from runs having 
identical physical parameters and doubled (or halve ) discretization parameters: 

FIG. Il. Potential (upper curve), electric field (middle curve), and electron flux (lower curve) at sur- 
face of 101, radius sphere over t=O to 125~;’ with signal amplitude 2kT/e, frequency O.~W,,. The 
potential curve is displaced upward 5kT/e for clarity. 
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FIG. 12. Same as Fig. 11, except that frequency is 2w,, and duration of run is t = 0 to 62.5~1.1;~~. 

grid spacing, timestep, number of angular momentum frames, number of water 
bags, and length of the simulation region. At sufficiently low frequencies, the elec- 
trons can be considered as instantaneously in equilibrium with the electrode poten- 
tial. The DC current can then be obtained by integrating the static current 
expression over an RF cycle. If the electrode potential remains negative throughout 
the RF cycle, the result is that the low-frequency current is equal to the static 
current multiplied by ZO(#rr), where Z,, is the modilied Bessel function of zero order 
and drf is the signal amplitude in units of kT/e. These analytic values are plotted at 
zero frequency in Fig. 10. In the limit of high frequencies, the DC current should 
equal the current to the biased electrode with no RF signal applied. This value is 
plotted as a horizontal line in Fig. 10. In the current characteristic for the small 
sphere excited with signal amplitude 3kT/e, a weak resonance peak is evident near 
0.7co,, . For the case of the large sphere driven at 2kT/e, a stronger resonance is 
evident near 0.40,~. In the characteristic for the small cylinder excited at lkT/e, 

-7. DO 
10.0 20.0 

FIG. 13. Zero-angular-momentum electron phase-space contours at t = 125~;’ in the run of Fig. 11. 
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FIG. 14. Zero-angular-momentum electron phase-space contours at I = 62.5~;’ in the run of Fig. 12. 

modest current enhancement is seen near 0.60,,. For the large sphere, it was found 
that startup transients took longer to die out near resonance. A large-sphere run at 
amplitude 3kTJe and frequency p.6w,, did not achieve a state of steady oscillation 
after 2000 timesteps. Hence a complete characteristic for the large sphere at 3kT/e 
was not obtained. Similar problems were encountered with the cylinder. This may 
be an effect of the fixed outer boundary at finite radius. 

Figure 11 shows the potential, electric field, and particle flux at the surface of the 
lO&, radius sphere near the frequency of the rectified current peak (O&D,,), and 
Fig. 12 shows the same quantities at 2ope. Note the phase difference between the 
potential and the particle flux. In particular, the phase of the particie flux relative to 
the potential in the high frequency case is - 157”. This anti-phasing of current and 
potential well above resonance frequency was seen in an earlier 1 -D planar-sym- 
metric simulation of resonance probe behavior [17]. 

Figures 13 and 14 show the zero-angular-momentum phase-space contours for 
the 101, radius sphere near and above resonance, respectively. In the resonant case, 
“streamers” of RF-excited particles leaving the simulation region are evident. The 
streamers are curved outside the sheath region, and inbound contours are also per- 
turbed outside the sheath. This contrasts with the streamer behaviour evident in the 
small-sphere case in Fig. 4. Here the streamers were nearly straight outside the 
sheath region, implying nearly impulsive accelerati.on inside the sheath. In Fig. 14, 
the outbound contours show small perturbations corresponding to the launching of 
Langmuir (plasma) waves by the electrode. All of these simulation results are 
cussed in more detail in [ 181. 

6. SUMMARY 

We have adapted the multiple-water-bag method to simulation of a 1 
system with inhomogeneous plasma and nonperiodic boundary conditions. The 
simulation is less noisy than a PIC code with a comparable number of particles. 
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We have used the MWB code to simulate the region around an RF-driven cylin- 
drical or spherical electrode immersed in a plasma. Our simulation of spherical 
resonance-probe behaviour produces results consistent with previous experimental 
and theoretical work [19-211. In particular, the decrease of the resonance fre- 
quency with increasing electrode radius and the damping of the rectification 
resonance peak are qualitatively as expected from Ref. [ 191. 

APPENDIX A: 
OPTIMIZATION OF WATER-BAG HEIGHTSAND BOUNDARYVALUES 

Integrating (3.4) gives 

& $ A,v:+La-““l.(~). 
k-l 

(A.11 

Multiplying both sides of (A.l) by h + i and using the recurrence property of the 
Gamma function gives 

Akvi+i=71-h/2r 
k=l 

(A.21 

which is identical to Eq. (3.5). For 2n values of i, Eq. (A.2) defines a set of 2n 
equations which can be solved for the Ak and vk. 

We see from Eq. (A.l) that for h = 2, one can define a moment corresponding to 
i = -1, and for h = 3, moments corresponding to i = -1, -2. Negative moments 
can be important in the theory of current collection by electrostatic plasma probes 
[ 123. Hence the best choice of 2n values of i is not unique for h = 2 or 3. 

However, by inspection of Eq. (A.2), we see that the systems of equations 
for h=l, i = 0, 1, 2 ,..., 2n - 1; h = 2, i = -1, 0, l,..., 2n - 2; and h=3, 
i= -2, -1, O,..., 2n - 3, differ from each other only by a factor of c”~ in their 
right-hand sides. Hence the values of vk are the same for the three cases, and the 
values of Ak for the second and third cases are easily obtained from the A, for the 
first by multiplying by ~~~~~ and c ‘, respectively. The equations for h = 2, 
i = 0, l,..., 2n - 1 and h = 3, i = -1,0 ,..., 2n - 2 are related in the same way. The 
same feature was noted in the moment equations for the delta-function 
approximation in [ 121. 

We let Cj=ch’2r((h+i)/2+ l), so Eq. (A.2) may be written 

n 

c A,v;+‘= Ci; i = 0, 1, 2 ,..., 2n - 1. (A.3) 
k=l 

We use the procedure described in Ref. [ 12, Sect. IV] to eliminate the A, from the 
system of Eqs. (A.3). This yields a new system of equations 
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ic m+lal=O 
I=0 

where m =O, 1,2,..., n - 1 and the a, are the coefficients of the nth-degre 
polynomial whose roots are vl, v2 ,..., v,, i.e., 

f 
n 

1 alvk=O, k = 1, 2,..., n. (A.5 

I=0 

We also choose a, = (- 1)“. 

We now write a formal solution of (8.4) for the a,: 

A/ 
ai=- 

A 
(A.61 

where A and A, are defined as 

CO c, ..I c,-, 

A= c1 

and 

.” c,-, (-l)““C, cl+, “. C,_l 

Cl c-v+1 c,,, C!,, “. 6, 

c,+i-2 (-ly+l &l &+n c2,-; 

c, ‘.. Cl-1 C[,l .I. c,-, c, 
CL c 1+2 ... cn Cn+l 

IL Cm+/--2 Cl+n G-2 G--l 

CO 

=(-I)’ Cl 

Substituting for the a, in (A.S), multiplying both sides by d, and using the 
properties of minors of determinants gives 

co Cl ..’ cl? 

(-1)” ; ; 
CZn-1 

= 0. 
n-l n .‘. 

1 vk 0: 

(A.3 
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From this we readily obtain [22] 

f-1)” 

co c, -l&co ..’ 
Cl C,-QC1 ..’ 

G -vkCn-1 
C n+l - vkCn 

‘c,-, cn-Ukcn-l “’ c2n-,--kc2n-2 

1 0 0 

=o (A.8) 

and finally 

The problem of finding the roots uk of (AS) has now been reduced to the eigen- 
value problem (A.9). We can then substitute the roots uk into any y1 equations of the 
system (A.3) and solve for the Ak. 

In [12], the equivalent of Eq. (A.4) for the delta-function case was solved 
numerically to give explicitly the coefficients of the polynomial (AS), whose roots 
were then found. This could be done for the present case as well, but the present 
method of obtaining the roots uk directly from the solution of the eigenvalue 
problem (A.9) gives better accuracy. For n = 4 and h = 2 and 3, water-bag boun- 
daries and step heights (renormalized values of Ak and ok), calculated as described 
above, appear in Table I. These and other calculations (not included) for values of 
IZ up to 20 were done on the York University Itel AS/6 computer using quadruple 
precision. 
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